
Internet Computer

A non-technical introduction

DFINITY Foundation
http://internetcomputer.org/library

Document version 1.0

 IN A NUTSHELL

Contents

Genesis of the Internet Computer project 3

Extending the decentralized internet paradigm 4

Blockchain functionality on a “World Computer” network 6

The DFINITY Foundation 9

How “World Computer” functionality was added to the internet 10

Why hosted software is immune to cyberattack 13

The economics of the Internet Computer network 16

The open governance of the Internet Computer 18

Understanding voting neurons 21

Understanding neuron maturity 22

How ICP enables AI to build custom applications and services solo 23

2

Genesis of the Internet Computer project
The Internet Computer project can be traced back to 2014, when Dominic
Williams, an early pioneer in blockchain technology, was working on ways to
make them vastly faster, more efficient, and scalable. He was the first
adapting classical distributed computing techniques for the blockchain
setting, and that year became the first to describe a “sharding” method for
creating infinitely scalable token ledgers.

His research work led him to becoming involved with the early Ethereum
community, before the Ethereum blockchain network launched. Ethereum
was working towards launching a network that would host a new kind of
“smart contract” software, which could be used to create DeFi
(decentralized financial) services.

Dominic soon realized that, with sufficient R&D effort, the principles
underlying smart contract technology could be more broadly applied, and a
new kind of network could be created that would host an evolution of smart
contract software that was much more general-purpose. This could be used
to create things like social networks, enterprise systems, and AI models,
which would run entirely from the network.

This new “network-resident” backend software would offer seminal
advantages when compared against the backend software that runs on

3

server machines in the traditional IT stack. For example, this software would
be immune to the usual forms of cyberattack, and unstoppable, within the
network’s “fault bounds.” The software would also greatly simplify how web
applications and other internet services are built and maintained.

Moreover, web applications and internet services built using this network-
resident software would be sovereign, in the sense that they resided on a
decentralized network, rather than on proprietary infrastructure provided by
a corporation, such as a cloud provider. Such software could also be
configured to run “autonomously” under the exclusive control of digital
governance systems, potentially paving the way for a new generation of
transparent and democratic internet services that run under the direct
control of their communities.

The primary objective of the imagined network was to extend the
decentralized public internet with “World Computer” functionality. While the
initial function of the internet was to make it easy to connect software,
independently of location, this new functionality would allow the
decentralized networking environment to also host software in the mode of
a public cloud computing platform. Where private network platforms were
more appropriate for an application, adapted versions of the technology
could be used to obtain security, resilience and other benefits.

Developing the technology became a major undertaking involving years of
work, and large teams of highly qualified researchers and engineers.

Extending the decentralized internet paradigm
The official birthday of the modern internet is January 1, 1983, when an
earlier network called ARPANET upgraded its network protocols. The
internet’s network protocols are decentralized, and trace their lineage back
through work on early packet-switching networks in the 1960s, which aimed
to develop communications networks that could withstand a nuclear strike.

The purpose of the internet was to connect software, independently of
where the software was running, in a highly resilient and simple way. Today it
is responsible for connecting our web browsers to web servers, so that we
can consume content on the World Wide Web, and forwards our emails,
transmits our instant chat messages, streams our video, and many other
things.

The permissionless and decentralized nature of the internet was key to its
success. Since no single actor owns or controls the internet, it can play the
role of a global public utility that belongs to all humanity.

4

Anyone can extend the physical infrastructure over which the internet runs,
for example in the role of an ISP (Internet Service Provider), which earns a
profit by selling access to others. The decentralized nature of the internet
means that such parties do not have to navigate gatekeepers or obtain
permission to build-out their infrastructure, nor worry that gatekeepers
might rescind their own access, which would destroy the value of their
investments. Thus, as demand for internet access and bandwidth began to
grow exponentially in the 1990s, new entrants quickly entered the internet
infrastructure market, and the internet quickly scaled its capacity to meet
demand without being throttled by bottlenecks.

These factors led to a massive wave of internet adoption starting in the
1990s, and the internet quickly became the default means to connect and
began to host a giant global marketplace for goods, services and information,
where anybody could take part.

The world is now exploring other ways that decentralized networks can
create useful functionality, and in 2008, Bitcoin pioneered a new kind of
“stateful decentralized network” that ran over the internet.

In a stateful decentralized network, the participants in the network jointly
maintain shared data that can only be updated in ways defined by the
network’s protocol. In the case of Bitcoin, the shared data is a ledger of
bitcoins that play the role of “digital gold.” This shared data can only be
modified by submitting properly authenticated “transactions” to the
network that move bitcoin between addresses.

5

Internet adoption post 1990 (the first website went live August 6, 1991)

Stateful decentralized networks are formed using network protocols with
special mathematical properties that prevent them from being subverted
and give them incredible resilience. This is why bitcoins cannot be stolen
without stealing the relevant authentication material from their owners, and
the network was not shutdown during its controversial early years.

Dominic’s aim was to build on the stateful decentralized networking
approach, to create a public network capable of hosting the world’s
computation – which network would act to extend the decentralized
functionality provided by the internet environment.

This would unlock a powerful new paradigm: today, while the internet
connects software, it cannot host backend software and data. Consequently,
while the internet connects us to things like social media services and
enterprise applications, which form part of our daily lives, the services
themselves do not run on the decentralized networking environment.
Instead, they run on centralized, proprietary, private computing
infrastructure, such as Big Tech’s cloud services, where they are constructed
using the technology of traditional IT.

While this centralized infrastructure suits many purposes, many services
would better run on “World Computer” functionality. DFINITY addressed this
need by launching the Internet Computer network May 10, 2021, after
several years work developing the necessary technology.

In the years since, the Internet Computer has been used by entrepreneurs
and businesses around the world to build and run everything from
decentralized social media, through games, sharing economy frameworks,
enterprise apps, financial systems, AI models, and more.

A new use case involves advanced AI models being enabled to build custom
web applications and internet services completely solo, by leveraging the
unique properties of the Internet Computer environment. In this new
paradigm, parties spin-up and evolve sovereign network- resident
applications simply by chatting with AI, then obtaining full ownership and
control over the underlying software code and data involved.

Blockchain functionality on a “World Computer”
network
The network-resident backend software that the Internet Computer hosts
offer a superset of the properties and functionalities of the smart contract
software that traditional blockchains like Ethereum host.

6

Smart contract software is tamperproof, in the sense it is guaranteed to run
its correct logic against its correct data, unstoppable, in the sense that it will
always run on request, and can be autonomous, in the sense it can exist
independently of human control, either where it cannot be updated, or
where it can only be updated by a decentralized digital governance system,
which implements the wishes of a community of independent actors. These
properties make it possible to use smart contracts on blockchains like
Ethereum and Solana to build decentralized financial (DeFi) rails that process
tokenized value.

However, the computational capacity of this smart contract software is
incredibly limited, and they can only host tiny amounts of data. This is
sufficient to implement DeFi schemes, which essentially involves maintaining
accounting information and applying straightforward related processing,
which nonetheless can often cost several dollars to execute. Such
computations are invoked through the submission of transactions, which
users create using crypto wallets.

While such traditional blockchains have helped pioneer DeFi, in practice even
those that market themselves as being the most “scalable” and “efficient”
remain unable to store a simple photograph taken using a phone (for
example, when these blockchains host an “NFT,” the related image is stored
elsewhere, such as on a cloud service).

Widespread confusion around their capabilities has arisen because “web3”
projects, such as social media websites and games, market themselves as
being built “on” blockchains whose ecosystems they often have financial ties
to. However, what is meant by this language, which is now almost universally
used, that the web3 services are built on centralized Big Tech cloud
infrastructure using traditional IT technology, and that they maintain
associated tokens and DeFi logic on the referenced blockchains.

By comparison, the Internet Computer really hosts services like social
networks, enterprise applications, and AI, which can be built exclusively from
the network-resident software it hosts.

This new form of network-resident software has tremendous speed,
efficiency and capacity differences when compared against traditional smart
contracts, which are measured in several orders of magnitude, but also
supports important new kinds of capability. For example, hosted software
pays the network for its own computation, and can process HTTP, such that
it can serve interactive web experiences directly to users, who may be
unaware that they are seamlessly interacting with software hosted by a
decentralized network rather than a server.

7

This contrasts with smart contracts, which cannot create web experiences,
such that users wishing to interact directly must manually invoke
computations by using crypto wallets to craft individual transactions that
must be configured to carry payment for the expensive smart contract
computation that will be performed, in a shot-by-shot basis.

Under the hood, the Internet Computer creates its decentralized platform
functionality using a lot of advanced math and computer science. It
leverages principles pioneered by blockchain but reimagines the science and
engineering on top to create a World Computer.

Special “chain key” functionality supported by the network allows network-
resident code to create accounts on traditional blockchains, and submit
signed transactions, without maintaining a private key that might be stolen
(in fact, the network’s nodes directly interoperate with Bitcoin and Ethereum
nodes).

This makes it possible to create trustless digital twins of tokens on
traditional blockchains, for example allowing DeFi functionality to be added
to networks such as Bitcoin that don’t natively support smart contracts, and
to fully decentralize web3 services that have been built using centralized
infrastructure, so as to make them tamperproof, unstoppable, autonomous
and censorship resistant in the mode of blockchain. Through this
functionality, traditional blockchains become part of one World Computer.

8

The DFINITY Foundation
In 2016, the DFINITY project was assisted by a venture-backed incubator of
decentralized computing projects based in Palo Alto, California.

When it was time to incorporate, it was seen that a neutral not-for-profit
organization would be more suitable for building out internet functionality
than a startup company, and so in October 2016, the DFINITY Foundation
was incorporated in Switzerland.

During 2024, DFINITY calculated that it had directed more than 1,000
person-years of R&D effort towards the development and improvement of
the Internet Computer, in an operation that continues at scale today.

The DFINITY Foundation has funded its operations through an endowment
of “ICP” tokens, which tokens derive from the economic rails that power the
Internet Computer network.

In February 2017, the DFINITY Foundation first sold ICP tokens in its “Seed”
public ICO (Initial Coin Offering). During this event, nearly 25% of all ICP
tokens were sold to hundreds of anonymous members of the public at 3
cents each.

Although the blockchain industry was much smaller than it is today, the
relatively small amount of funds raised enabled DFINITY to begin rapidly
scaling its R&D operations. A second public ICO fundraise had been planned,
but regulatory changes prevented it taking place.

9

DFINITY then ran two private fundraising rounds in 2018, called the
“Strategic” and “Presale” fundraisers, raising over $110m from more than
100 different high-profile hedge funds, venture capital firms, and high-net
worth individuals.

DFINITY leveraged research centers in California and Zurich, Switzerland.
The early team combined technical talent from California’s early crypto
scene with leading engineers, researchers and cryptographers drawn from
organizations such as Google.

During 2018, DFINITY scaled R&D operations in Zurich, by drawing famous
and well-known cryptographers from IBM Research Europe, which is based
outside Zurich, including Jan Camenisch, who became DFINITY’s CTO, and
numerous engineers and researchers from Google, which maintains its
second largest campus outside Mountain View in Zurich, and academics from
Zurich ETH. As a result of this expansion, more than half the DFINITY staff
now resides in Switzerland.

A distinguishing feature of the project is that it has been able to blend
pioneers of the early crypto scene with highly qualified and published
technical personnel from high tech and research backgrounds, which has
been key to the realization of the “World Computer” vision.

DFINITY has become world-renowned for its advanced research and
engineering capabilities.

How “World Computer” functionality was added to
the internet
The internet is the original decentralized network, and is created by a
network protocol called IP (“Internet Protocol”). A network protocol is a
carefully defined language that computing devices separated by network
links can speak to each other to create a functionality.

IP combines physical network hardware and links from independent
participants to create a highly resilient public network that can continue
functioning even if a substantial portion of the individual participants fail by
rerouting data flows. Arbitrary networking hardware can be combined, from
a phone’s cellular transceiver to an ethernet switch run by an ISP, to a WiFi
router installed in a home, to an undersea fiber optical cable. This
heterogenous hardware is weaved together to create a robust global-scale
environment that connects software, independently of where it is running.

10

The Internet Computer is inspired by the internet model but aims to extend
the functionality of the public internet environment so that it can also host
software.

A network protocol called ICP (“Internet Computer Protocol”) runs over the
internet to combine special “node machine” hardware that independent
“node providers” (typically companies) operate from data centers around the
world. At the time of writing, there are more than 130 node providers that
own and operate node hardware at scale. ICP weaves this hardware together
to create public “World Computer” functionality.

Node machines are built to specifications that are publicly standardized. This
allows them to be combined to replicate computation in data, without less
capable machines falling behind when the network is under load. Node
machines resemble server computers but have design changes to make
them more suited to processing the ICP protocol, and don’t include
expensive hardware redundancy features since the network’s distribution
and replication of data and computation makes them unnecessary.

Within the overall Internet Computer network, the ICP protocol organizes
these node machines into “subnets.” The network creates subnets by
combining node machines operated by different node providers, from
different data centers, which are in different geographies and jurisdictions.
The purpose is to deterministically decentralize the hardware involved, in
ways that allow the mathematics of the protocol to deliver the required
levels of security and resilience with the minimum of replication, which
maximizes efficiency.

11

Each subnet hosts a subset of the units of network-resident software hosted
by the network, and the network increases its capacity by creating new
subnets.

The units of software are an evolution of smart contracts called “canisters,”
because they bundle logic (in the form of WebAssembly bytecode) and data
(in the form of persistent memory pages). Canisters run within a radical new
form of “serverless cloud” environment. Within this environment, the
subnets are transparent to the canister software, and software can directly
call into any other software on the Internet Computer, permissions allowing.

What’s important, is that the ICP protocol ensures that if some of the nodes
in a subnet become faulty or fail, then the software it hosts continues
running without a hitch.

Moreover, the computer science employed by the ICP protocol imbues
subnets (and the overall network) with a technical property called “Byzantine
Fault Tolerance.” This guarantees that even if an adversary of the network,
such as an imaginary “Dr. Evil,” manages to gain physical control over a
portion of the nodes in a subnet, and can arbitrarily corrupt their
computations and data, and their interactions with other nodes, then the
software units running on the subnet shall continue running completely
correctly, and none of their computations or data shall be corrupted or
influenced in any way.

The Internet Computer network is highly dynamic and can add and remove
subnet nodes without interrupting hosted software. When the network
needs more capacity, it forms nodes into new

12

subnets. When a subnet is overloaded by the software it already hosts, the
subnet forks into two subnets, which divide the hosted software between
them.

The protocol math and computer science that makes all this possible in
practice is complicated. ICP is designed and implemented in a modular way,
which allows engineers and researchers to contribute within their domains of
experience, without having to understand how all parts would work in detail,
while allowing the end-to-end mathematical properties to be verified. This
approach to protocol design has allowed ICP to become the most
sophisticated network protocol ever engineered.

A new kind of decentralized compute platform has thus emerged, which can
host serverless software, computations and data, at scale, which is immune
to cyberattack and unstoppable, which can interact with HTTP to create
web-based user experiences and is flexible enough to run AI models.

Why hosted software is immune to cyberattack
The backend software and data on traditional IT is highly vulnerable, and a
degree of insecurity and risk remains even when the best cybersecurity
technologies and practices are used. Even active management by security
teams leveraging firewalls, anti-malware, and intrusion monitoring systems is
insufficient to guarantee security. At any time, a mistake can result in
hackers entering systems, and exfiltrating confidential data, or encrypting
systems with ransomware potentially causing permanent system and data
loss, and global cybercrime costs are now approaching $10 trillion a year.

The Internet Computer addresses these challenges by providing “World
Computer” functionality with security and resilience guarantees that derive
from the mathematical design of the ICP protocol. Within the “fault bounds”
of the protocol, the Internet Computer guarantees that software it hosts is
tamperprooof (in the sense it will always run its correct logic against its
correct data) and unstoppable (in the sense it will always run its logic against
its data on demand).

The architecture leverages two key principles to make network-resident
software immune to traditional forms of cyberattack and unstoppable.

The first key principle involves running each unit of hosted network-resident
software within a global-scale distributed “virtual execution environment.”
This is analogous to how Web browsers protect users from the software
embedded inside the web pages they display, by hosting each page’s
software inside a secure sandbox, so that hackers cannot craft code that

13

allows them to escape onto users’ computing devices and do malicious
things.

The Internet Computer places all the network-resident software it hosts, and
all related computations and data, into a similar framework – the innovation
being that the virtual execution environment hosts an entire serverless
cloud computing platform, rather than simply the code embedded within a
web page.

Perhaps unsurprisingly, the Internet Computer and web browsers share
technology. The Internet Computer runs software on a specialized version of
the “WebAssembly” virtual machine. This virtual machine is also used by
modern web browsers to safely run software packaged within web pages at
native speed, for example for purposes such as decoding video.

An interesting historical note is that WebAssembly was co-invented by one
of the earliest DFINITY Foundation team members (Andreas Rossberg). From
the beginning, it was intended that WebAssembly would be used to safely
run performant backend software, as well as software in web browsers. To
create the overall virtual execution environment, the Internet Computer
adds many additional components to WebAssembly, for example providing
units of software with APIs

that enable them to call into other software, set permissions and other
configurations, and process HTTP to serve content and interactive web
experiences.

Thus, although the Internet Computer is “permissionless,” and there is no
barrier to malicious software being freely uploaded, because the cloud
computing platform runs within a distributed sandbox, it cannot escape onto
the node machines that host the network to cause faults, or subvert the
environment to interfere with other network-resident software in
unexpected ways.

The second key principle involves hosting the virtual execution environment
inside a “stateful decentralized protocol.” As discussed earlier, in the case of
Bitcoin, the “state” is the ledger of bitcoins, and in the case of the Internet
Computer, the “state” is the entire virtual execution environment that hosts
the cloud computing environment.

Network protocols often require that participants maintain some data
related to their interactions. For example, TCP (“Transmission Control
Protocol,” which is part of the IP family of protocols) allows two instances of
software to maintain a reliable bi-directional stream of data over the
internet, which developers access via software libraries to perform tasks
such as streaming video and transferring chat messages. The libraries that

14

implement the protocol are required to maintain contextual data relating to
the stream.

A stateful decentralized protocol differs in that there are many participants,
and through their interactions with other participants and the contextual
information and computations they perform as a result of following the rules
of the network protocol, they also jointly maintain a copy of a shared global
“state” (which is consistent across all participants).

Part of the inventive step involved is that even if individual participants don’t
follow the rules of the protocol, and even if they actively try to disrupt other
participants, the copy of the state that correctly behaving participants
maintain is not corrupted and remains consistent. This means that faulty
participants helping host the Bitcoin network cannot conjure up new
bitcoins, or steal existing bitcoins, even if they are “Dr. Evil,” and similarly,
participants in the Internet Computer network cannot interfere with hosted
software, or its computations and data. This results from the protocols being
mathematically designed and achieving a special property known as
“Byzantine Fault Tolerance, which provides security and resilience
guarantees.”

The power of this approach is that hackers cannot make 2+2=5 and bend the
rules of math. So long as the proportion of faulty participants does not
exceed the mathematically-designed fault bounds of the network, the
platform created by the network remains tamperproof and unstoppable,
which property is extended to hosted software and its computations and

15

data, since this is just part of the state, in the same way that a bitcoin is part
of the state of the Bitcoin ledger.

An obvious danger with such schemes is that a “Dr. Evil” might add new
faulty participants to the network (here, node machines), until such time that
the proportion of faulty participants exceeds the fault bounds. However, the
network is designed in such a way that the “node providers” that own and
operate node machines are identified, and they are combined in ways that
prevent this from happening.

Traditional IT infrastructure is very different beast. Software runs directly on
computers, rather than inside a virtual execution environment inside a
mathematically secure protocol. A hacker can exploit software to escape
onto a computer’s operating system, or into other software, and then
exfiltrate data, or install ransomware.

By contrast, the Internet Computer guarantees that network-resident
software and its data and computations cannot be subverted, and can
always be invoked.

This has been proven in production. At the time of writing, there are web3
social networks running on the Internet Computer, which have many
thousands of users, and which, for the past two years, have enabled users to
maintain cryptocurrency tokens inside their accounts so they can
conveniently transmit them using means such as instant messaging. These
services have run problem free, despite numerous prolific state-funded
hacking groups being focused on stealing cryptocurrency from internet
services, and despite the services running without security teams or
traditional forms of cybersecurity such as firewalls and anti-malware.

The Internet Computer provides a seminal advance in how software logic and
data is secured.

The economics of the Internet Computer network
Just like the internet itself, the Internet Computer aims to run in the mode of
a global public utility, which nobody owns and controls. To be self-sustaining,
decentralized networks must incorporate economic models that support the
financing of the physical hardware that hosts them.

The internet creates a self-sustaining economy through “peering
relationships.” In its most obvious form, parties pay other parties to connect
their computing devices and networks to the internet. For example, a retail
user might pay a cellular operator to connect their phone, and a business
might pay an ISP to connect their office, which in turn might pay an internet

16

backbone provider to add additional connectivity to their subnets, which
may pay to connect to undersea cables.

(Sometimes the nature of the economic benefit provided by peering
relationships takes other forms, especially at the core of the internet. For
example, some Big Tech organizations run undersea cables and allow
telecoms corporations to connect to them for free, receiving economic
benefit by guaranteeing and speeding access to their services for billions of
users. Meanwhile, multi-party peering relationships often involve payment-in-
kind, in the sense that each adds redundancy to their routes, such that there
are no obvious payments being made.)

The internet can leverage a peering-based economic model to fund its
underlying network infrastructure because its purpose is to connect
software. The purpose of the Internet Computer is to host software, and it
uses a different kind of economic model to flow value from hosted software
to those operating the underlying hardware, which involves tokenization.

A ledger of “ICP” tokens (named after the protocol) is hosted by the Internet
Computer network. These are imbued with value by various sources of
demand deriving from utility they provide, which allows the network to issue
them to the node providers as a reward for node machines they correctly
operate.

Node provider businesses have fixed costs, which relate to the cost of
capital involved in acquiring their node machine hardware, and then hosting
it inside a data center, and administering their infrastructure. Since the price
of crypto tokens can be volatile, the network’s protocols modulate the
number issued to node providers to ensure their financial rewards are stable
when measured against fiat currencies, allowing them to operate their
businesses in a stable way.

A key source of demand, which helps imbue the ICP tokens with value,
relates to how software installed on the network is run. Software on the
network must be charged with a digital fuel called “cycles,” which it burns as
it performs computations and persists data, much like an electric car is
charged with electricity, and then burns the electricity as it travels around.

The Internet Computer provides functionality to convert ICP tokens worth 1
XDR (a virtual currency defined by the IMF) into 1 trillion new cycles, thereby
also making the cost of compute on the network stable and predictable. On
a continual basis, people running software on the network convert ICP
tokens they have purchased into cycles, which they use to power their
software, causing it to be burned and disappear forever.

17

Additional sources of demand for ICP tokens derive from their role as a form
of cryptocurrency, and their use as form of “stake” that enables participation
in network governance.

Thus, the four primary purposes of ICP tokens are:

1. Providing the source material for a digital fuel called “cycles,” which are
needed to power software hosted on the Internet Computer network.

2. Providing the Internet Computer with a means to reward node providers
hosting the network.

3. Mediating participation in network governance and providing rails that
can reward participants.

4. Application as a programmable store of value and medium of exchange
(cryptocurrency).

The open governance of the Internet Computer
It would be extremely difficult to create a global scale decentralized network
without some form of governance because some tasks involved in their
management require the application of intelligence (human or otherwise).

While the internet is mostly decentralized, it does have some centralized
dependencies related to governance, including a not-for-profit organization
in America called the “Internet Corporation for Assigned Names and

18

Numbers” (or “ICAAN”). Among roles, the organization organizes the
dispensing of internet addresses used by computers, and friendly domain
names.

Any centralized dependencies within decentralized networks are
vulnerabilities, which can reduce neutrality, security and censorship
resistance, among other issues. For this reason, the Internet Computer runs
under the control of a fully automated and permissionless decentralized
governance system called the “Network Nervous System” (or “NNS”), which
orchestrates the entire network.

The NNS is created by a sophisticated software framework that is hosted on
the network itself, which is also directly integrated into the underlying ICP
protocols.

Since the node machines that host the network blindly process ICP protocol
interactions with other nodes, they also follow the instructions of the NNS
automatically. This allows the NNS to orchestrate network governance and
management, without centralized actors being involved.

The NNS is permissionless and decentralized, and functions as a kind of DAO
(“Decentralized Autonomous Organization”), which allows the Internet
Computer to run with full autonomy, while also dynamically adapting and
evolving.

Anybody can submit proposals to the NNS, which describe actions the
network should take. Each proposal belongs to a standard topic, and has a
specific type, which defines exactly what information must be supplied.
Proposals trigger actions such granting a cryptographic identity to a new
node provider wishing to join the network, tweaking network economics,
updating the node machine software that processes the ICP protocol across
the network (which is how the network regularly upgrades the version of ICP
that it is running), creating additional capacity for software by creating new
subnets, splitting overloaded subnets, and myriad other functions, including
ingesting external data that helps the network function.

The design of the NNS enables it to rapidly securely decide on proposals.
Because the proposals the NNS adopts are automatically executed by the
network, the network can rapidly adapt to changing circumstances, such as
increases in demand, and evolves under its own steam by

quickly integrating improvements. At the time of writing, the NNS often
adopts tens of proposals a day, reflecting the degree to which the network
runs in a highly dynamic and self-directed manner.

19

Anyone can submit proposals because the NNS is permissionless, and
anyone can participate in voting on proposals, reflecting the open and
democratic aims of the network.

A challenge with any such governance system, is finding a way to ensure that
participants vote in honest and responsible ways, and ways to stop malicious
parties simply joining in large numbers to out-vote honest parties, which
could result in the network performing harmful actions, such as adopting an
upgrade that deletes all data.

This problem is solved by voting “neurons.” To vote on NNS proposals, it is
necessary to create anonymous neurons within the NNS, and then imbue
them with voting power by locking ICP tokens inside. Consequently,
everyone that votes on proposals has placed ICP tokens they own at risk by
locking them.

If harmful proposals are adopted, this will cause the value of the ICP tokens
locked inside neurons to fall, and vice versa, creating an incentive for neuron
holders to vote for actions that will create long-term advantage, because the
ICP tokens they have locked inside their neurons cannot be immediately
retrieved.

The NNS provides incentives that encourage people to participate in
governance, as well as node provision, which has resulted in massive amounts
of capital being locked inside neurons by honest parties. This makes it
infeasibly expensive for malicious parties to acquire sufficient ICP tokens to
exert a harmful influence by voting on proposals, even though they may have
financial incentives to do so (for example, because they have placed short

20

bets on the ICP token and wish to harm the network to make them
profitable).

Understanding voting neurons
To participate in Internet Computer governance, it is necessary to create
“voting neurons” inside the NNS. Neurons are standalone objects, which are
not designed to be transferred or sold. Neurons create powerful incentives
that encourage participation in NNS governance, while ensuring the overall
governance system functions as intended.

NNS participants can configure their neurons to vote completely
automatically by following the voting of other neurons they have selected,
which typically belong to leaders and experts within the Internet Computer
ecosystem.

Neuron owners can also configure voting to follow the majority vote of a
quorum of other neurons, and can reselect which neurons are followed, or
return to manual voting, at any time. Following can be configured differently
for each of the various governance topics the NNS supports, allowing voting
power to be precisely delegated to those with appropriate expertise. The
NNS thus functions as an advanced “automated liquid democracy” that has
no direct parallel in the world today.

Many participants in NNS governance create their neurons to earn rewards in
ways described herein, encouraging the contribution of capital value. Since
these neuron holders typically delegate day-to-day voting power to experts

21

for the purposes of convenience, this provides tremendous security and
stability, while leaving ultimate power among the totality of neuron holders.

The influence any individual neuron can exert, and the size of the rewards it
can eventually earn, derives proportionately from the relative size of its
voting power.

The voting power of each neuron depends on its configuration when it votes,
specifically: 1) the number of ICP tokens locked inside, 2) its current
“dissolve delay,” which determines how long it would take to release the ICP
tokens inside were it placed into “dissolving mode,” which causes the
dissolve delay to fall with time, and 3) it’s “age,” which is a virtual attribute
calculated as the lessor of the time elapsed since the neuron was created,
and the time elapsed since it was in dissolving mode.

The voting power of a neuron is calculated using the formula:

Voting power = locked ICP tokens x dissolve delay bonus x age bonus

(Limits include that the maximum dissolve delay that can be configured is 8
years, and that neurons can only vote when the dissolve delay is 6 months or
greater, and the maximum calculated age is 4 years. The “dissolve delay
bonus” starts at 1.0 when the dissolve delay is 6 months, and increases to 2.0
at 8 years, and the “age bonus” starts at 1.0 when the age is zero days, and
increases to 1.25 at 4 years.)

For every vote a neuron submits on a proposal, the NNS increases its
“maturity” attribute as a reward. When neurons gain maturity, they can be
used to create new ICP tokens later.

Understanding neuron maturity
Each neuron has an attribute called “maturity,” which is analogous to the
weight of a physical object. Since maturity is an attribute, it cannot be
separated from a neuron (i.e. it is not a token that can be separately
transferred and held). The NNS increases the maturity of neurons as a
reward for voting on proposals.

Every 24-hour period, the NNS has a total number of maturity points that it
wishes to distribute among voting neurons, which is defined by the Internet
Computer’s protocols. To make the distribution fair, the NNS divides the
maturity points among neurons that voted in proportion to the total number
amount of voting power they deployed.

Therefore, neuron owners can maximize their maturity gains, by making sure
their neurons vote on every proposal, and by maximizing their voting power

22

by locking additional ICP tokens inside, configuring their dissolve delays to
be longer, and waiting for their calculated age to reach the 4- year maximum.

Once neurons have gained maturity, they can be used to produce new ICP
tokens for their owners.

In principle, the exact process involved depends on the current design of the
NNS, which can evolve as the network is updated to improve its tokenomics.
But in the current design, a neuron with maturity can be used to “spawn” a
new neuron that has newly minted ICP tokens inside.

When a new neuron is spawned, the number of new ICP tokens inside is
approximately equal to the maturity points “consumed” on the source
neuron, and its dissolve delay is set to zero, which allows the new ICP tokens
inside to be immediately withdrawn if that is the wish.

The spawning process takes a week from start to end, which means that the
owner of a neuron cannot predict what the price of the new ICP tokens will
be on markets where they are traded once they can be retrieved.
Furthermore, the number of new ICP tokens that is produced depens on how
the price is trending during the spawning process.

If the price rises while the spawning process is taking place, a slightly larger
number of new ICP tokens will be produced, and vice versa, with a variance of
+/- 5%, which encourages neuron owners to generate income in the form of
ICP tokens only when the markets upon which they are traded are healthy.

How ICP enables AI to build custom applications
and services solo
A key emerging purpose of the Internet Computer, and ICP stacks generally,
is to enable advanced AI models to spin up and evolve custom web
applications and internet services in response to simple instructions given by
a chat interface.

The applicability is broad. For example, an individual might create a personal
branding website, wedding planner, or game to share with friends, while a
startup entrepreneur might create a web3 sharing economy service, or e-
commerce website, and a larger company might create a corporate portal
with CRM or ERP functionalities, or even AI and RAG infrastructures. The
custom applications and services thus created are completely sovereign, in
the sense their creator owns the underlying software code and data
contained and does not risk the customer lock-in that might occur had they

23

built on proprietary infrastructure such as cloud services and SaaS
platforms.

When AI writes serverless Internet Computer software to create and update
applications according to instructions provided by chat, this can be
“compiled” and uploaded to the network single shot. This contrasts with
traditional IT, where updates can involve software and configurations being
installed across a plethora of platform components such as databases and
web servers and can involve tasks such as cloud orchestration, and
configurations of things like backup and security systems, which proceed far
slower than chat speed, and involve problem ladders that require iterative
resolution.

While AI is increasingly powerful, it will remain the case that it can
hallucinate and make mistakes for some time, and this presents another
challenge when AI must maintain services on traditional IT. On the Internet
Computer, software is automatically tamperproof, just like the network,
which means that a mistake by AI does not open the door to traditional
cyberattacks. By contrast, a mistake on traditional IT could have
catastrophic consequences.

Similar challenges are involved having AI upgrade services built on traditional
IT. Most obviously, traditional IT has been designed to support infrequent
upgrades, which can be complex and involve synchronization changes across
multiple platform components, rather than to enable upgrades every few
minutes in response to chat inputs. Furthermore, software upgrades usually
involve data migrations, and mistakes can result in data loss.

24

The Internet Computer supports a paradigm called “orthogonal persistence,”
which essentially somewhat collapses the difference between logic and data
– software engineers define logic, and the data it references persists
automatically, without the need to copy it into a database or file (this is
because software runs inside persistent memory pages). A special domain-
specific language called Motoko has been created to leverage powerful
features of the Internet Computer environment, and tailor orthogonal
persistence in ways that better support AI building solo.

25

These include making data migrations associated with upgrades extremely
efficient, allowing AI to effectuate upgrades to applications and at services
at “chat speed.” In addition, language features ensure that as software is
updated, necessary migrations of memory-resident data are described as
part of the software update’s code and will fail to build if it includes a mistake
that would result in data loss.

26

